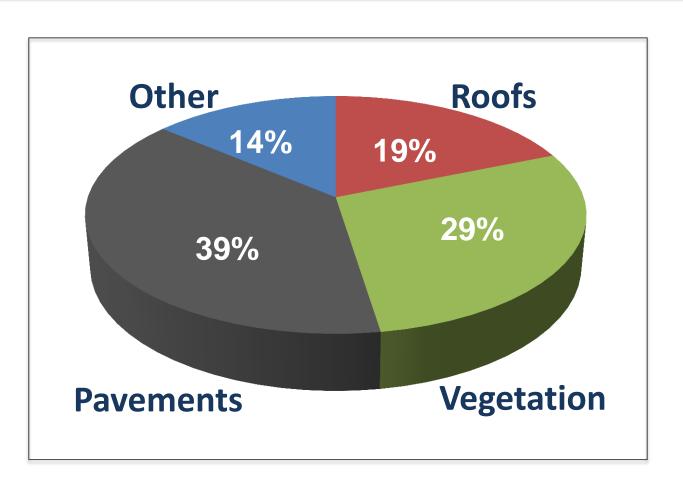


HEAT ISLAND GROUP

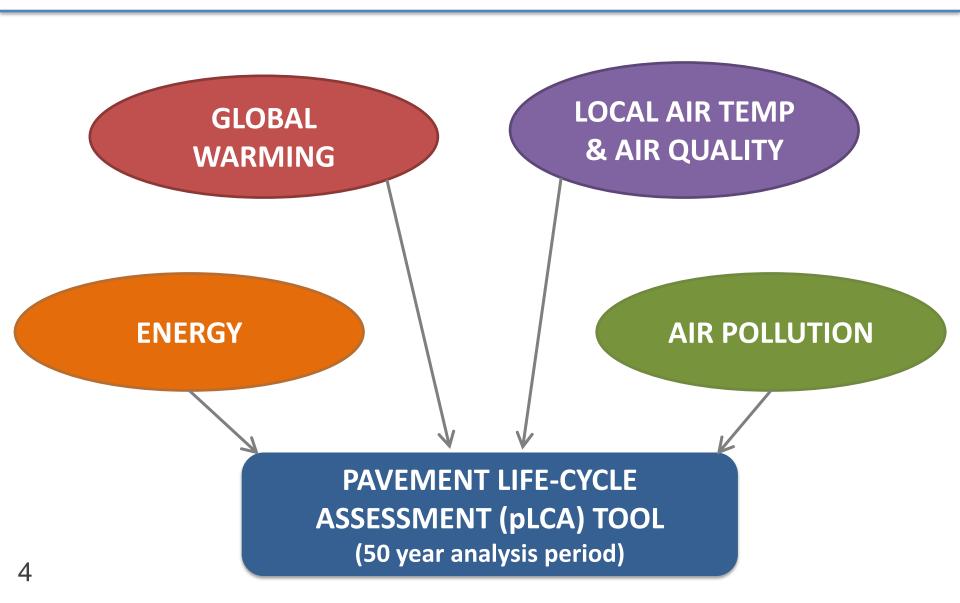
Life-Cycle Assessment and Co-benefits of Cool Pavements

Lawrence Berkeley National Laboratory
University of California – Davis
University of Southern California
thinkstep, Inc.


ARB Research Seminar
May 3, 2017
Sacramento, CA

<doi:10.1016/S01692046(02)00165-2> 2003 Akbari et


Pavements are an important part of the urban environment


Sacramento

Fractions of land area were measured above tree canopy

Pavements can contribute to urban heat islands but can be designed to stay cooler

Project seeks to advise communities on energy and environmental consequences of "cool" pavements

The pLCA tool can be useful in many contexts, but it was designed for local governments

- Study findings are relevant for a variety of pavements
 - E.g., those constructed and maintained by Caltrans
- However, local governments are the primary audience for the pLCA tool
 - Key project goals to facilitate decision-making at the local level, inform climate action planning, etc.

The tool presents life-cycle assessment (LCA) results to aid decision making

TOOL

CITY PLANNING

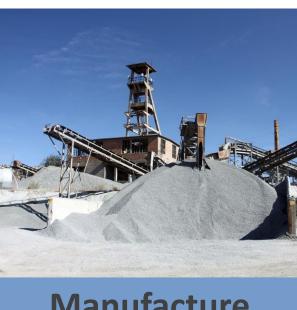
PAVEMENT DECISIONS

pLCA TOOL

Enable scenario
planning to evaluate
consequences of
switching to cool
pavement

Climate action/adaptation plans

Building codes


Zoning ordinances

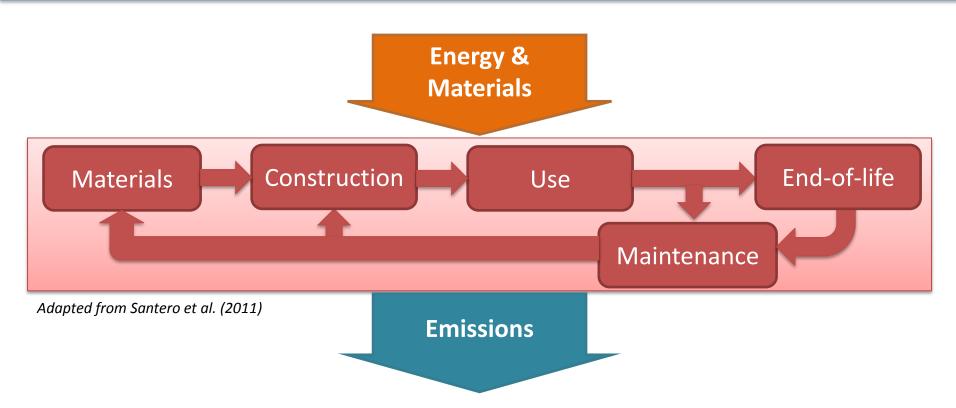
Pavement maintenance

Materials specification

Pavement Life-Cycle Assessment Tool Scope

Pavement manufacturing, construction, and transportation requires energy & produces emissions

Manufacture



Construction

Transportation

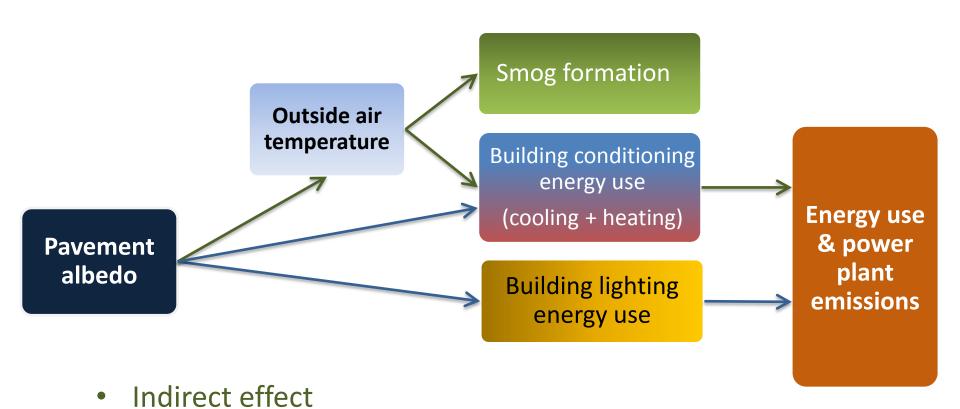
We assessed energy and environmental effects across the 50-year pavement life-cycle stages

- Materials and construction stage [MAC]
 (materials, transportation, construction, end-of-life)
- 2. Use stage (cooling, heating, and lighting of buildings)

Many environmental impacts of the pavement lifecycle were beyond the scope of this project

Construction
Work zone traffic

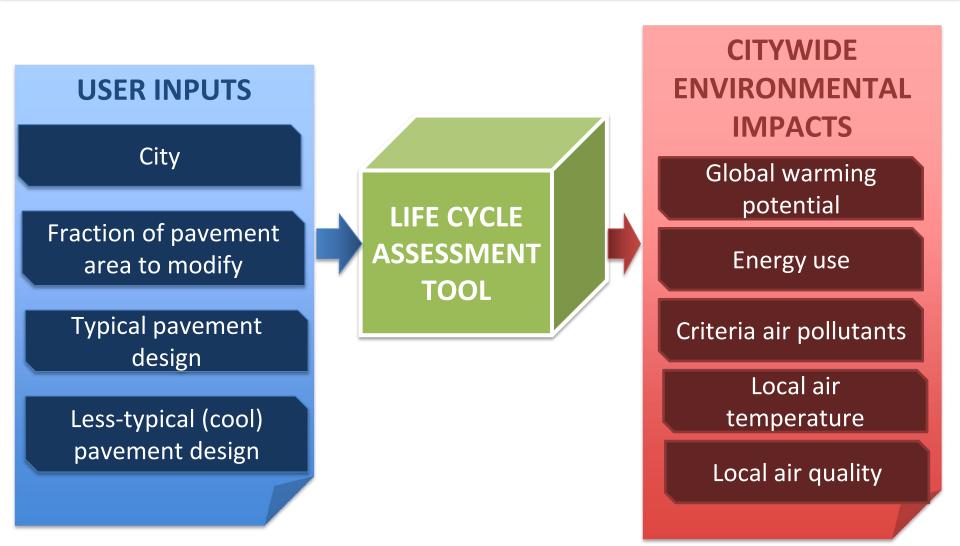
<u>Use</u>

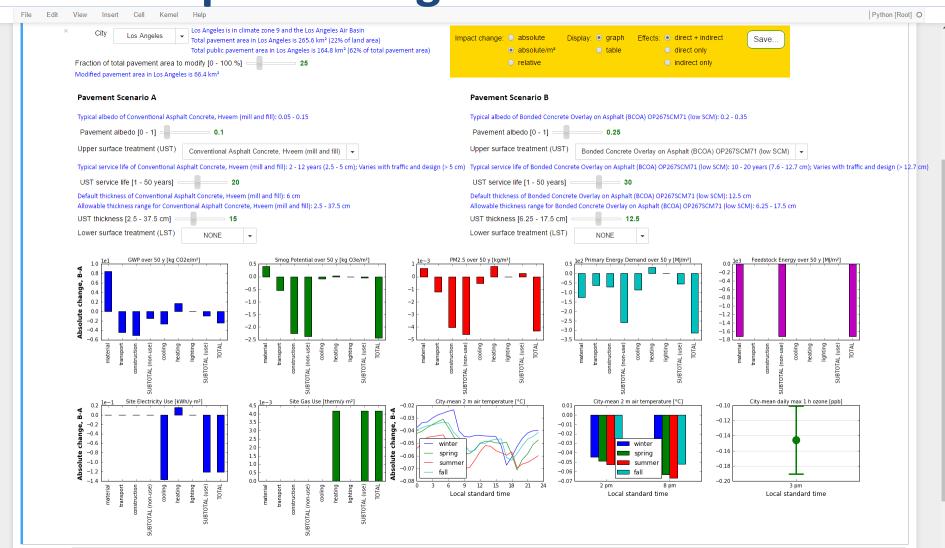

Carbonation

Vehicle/road interaction

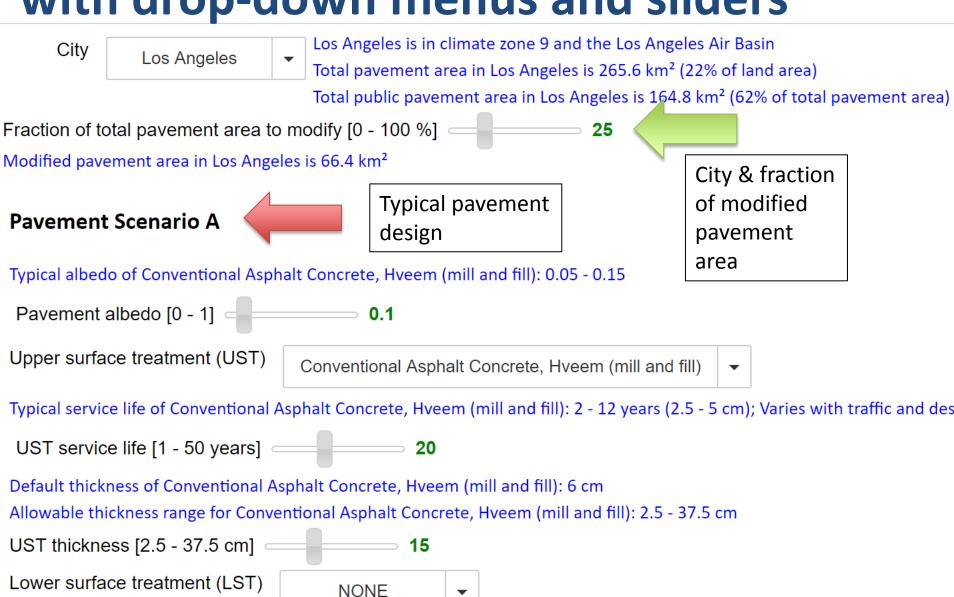
Stormwater runoff

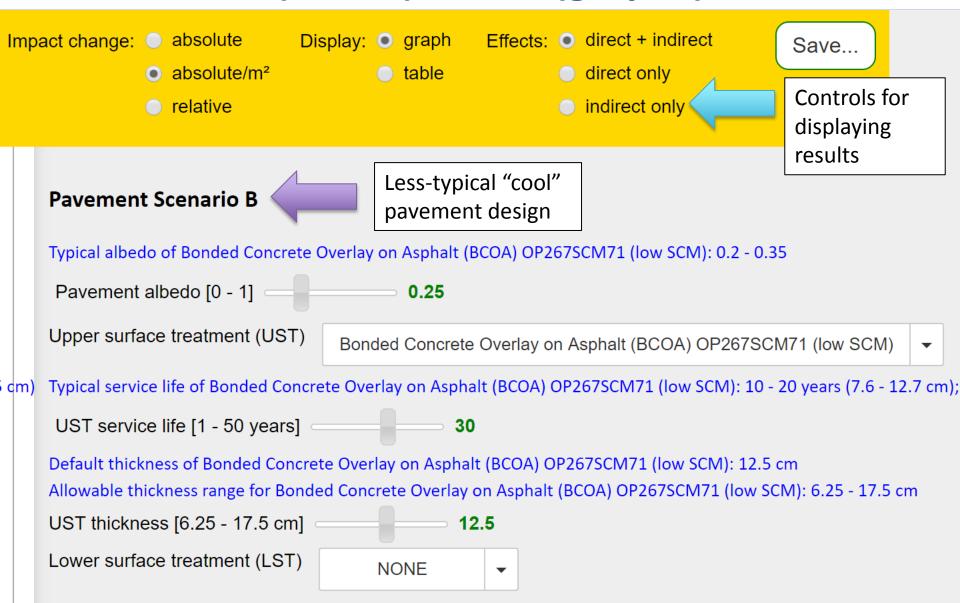
Dynamic construction equipment emissions
Global cooling

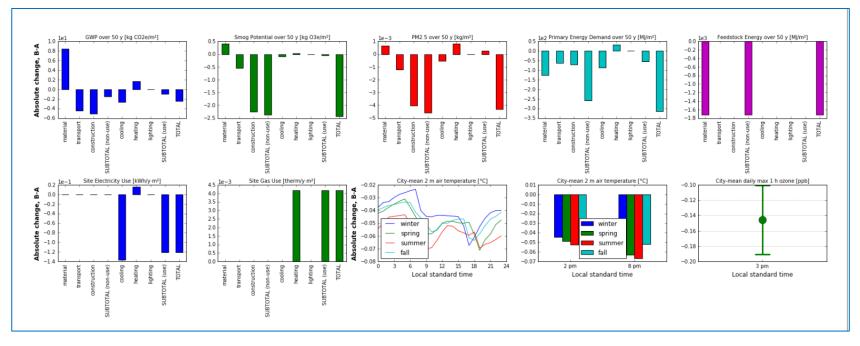

We analyzed use-stage effects that result from change in pavement albedo


Direct effect

Pavement Life-Cycle Assessment Tool Operating the Tool


To operate the tool, the user only needs to select a few inputs


The tool interface updates the results as the inputs change


The tool user selects inputs with drop-down menus and sliders

Inputs and outputs can be viewed onscreen, or saved to CSV (tables) & PDF (graphs)

Outputs can be viewed as graphs or tables


```
Absolute impact change per unit area of pavement modified, B-A [direct + indirect]:
                   GWP over 50 y [kg CO2e/m²] Smog Potential over 50 y [kg O3e/m²] PM2.5 over 50 y [kg/m²] Primary Energy Demand over 50 y [M]/m²] Feedstock Energy over 50 y [M]/m²] Site Electricity Use [kkw/y·m²] Site Gas Use [therm/y·m²]
material
                                    +8.43e+00
                                                                           +4.09e-01
                                                                                                   +6.72e-04
                                                                                                                                           -1.26e+02
                                                                                                                                                                               -1.73e+03
                                                                                                                                                                                                                +0.00e+00
                                                                                                                                                                                                                                          +0.00e+00
transport
                                     -4 44e+00
                                                                          -5.49e-01
                                                                                                   -1.21e-03
                                                                                                                                           -6.41e+01
                                                                                                                                                                               +0.00e+00
                                                                                                                                                                                                                +0.00e+00
                                                                                                                                                                                                                                          +0.00e+00
construction
                                     -5.11e+00
                                                                          -2.25e+00
                                                                                                   -4.01e-03
                                                                                                                                           -7.03e+01
                                                                                                                                                                               +0.00e+00
                                                                                                                                                                                                                +0.00e+00
                                                                                                                                                                                                                                          +0.00e+00
SUBTOTAL (non-use)
                                    -1.54e+00
                                                                          -2.38e+00
                                                                                                   -4.57e-03
                                                                                                                                           -2.60e+02
                                                                                                                                                                               -1.73e+03
                                                                                                                                                                                                                +0.00e+00
                                                                                                                                                                                                                                          +0.00e+00
cooling
                                    -2.63e+00
                                                                          -8.69e-02
                                                                                                   -5.49e-04
                                                                                                                                           -8.59e+01
                                                                                                                                                                               +0.00e+00
                                                                                                                                                                                                                -1.37e-01
                                                                                                                                                                                                                                          +0.00e+00
                                    +1.69e+00
                                                                          +4.04e-02
                                                                                                   +8.14e-04
                                                                                                                                           +3.20e+01
                                                                                                                                                                               +0.00e+00
                                                                                                                                                                                                               +1.59e-02
                                                                                                                                                                                                                                          +4.16e-03
heating
lighting
                                    -2.54e-04
                                                                          -8.37e-06
                                                                                                   -5.29e-08
                                                                                                                                           -8.28e-03
                                                                                                                                                                               +0.00e+00
                                                                                                                                                                                                               -1.32e-05
                                                                                                                                                                                                                                          +0.00e+00
SUBTOTAL (use)
                                    -9 49e-01
                                                                          -4 65e-02
                                                                                                  +2 65e-04
                                                                                                                                           -5 40e+01
                                                                                                                                                                               +0 00e+00
                                                                                                                                                                                                               -1 21e-01
                                                                                                                                                                                                                                          +4 16e-03
TOTAL
                                    -2.49e+00
                                                                          -2.42e+00
                                                                                                   -4.30e-03
                                                                                                                                           -3.14e+02
                                                                                                                                                                               -1.73e+03
                                                                                                                                                                                                               -1.21e-01
                                                                                                                                                                                                                                          +4.16e-03
Air temperature change, B-A [°C]:
         winter spring summer fall
2 pm LST -0.04 -0.05 -0.05 -0.05
8 pm LST -0.05 -0.06 -0.07 -0.05
Ozone change at 3 pm LST [ppb]: -0.15 (range -0.19 to -0.10)
```

The tool reports LCA metrics, annual metrics, and instantaneous metrics

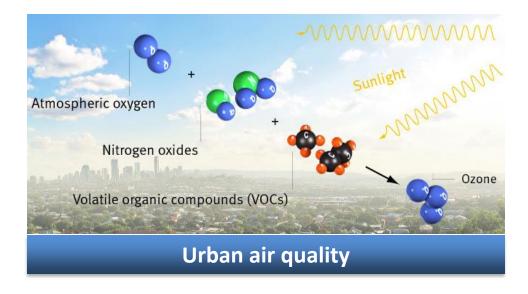
LCA metrics	Units		
Global Warming Potential (GWP)	kg CO₂e*		
Photochemical Ozone Creation Potential (POCP)**	kg O₃e		
Particulate Matter, less than 2.5 micrometers in diameter (PM2.5)	kg		
Primary Energy Demand (PED) excluding feedstock energy	MJ		
Feedstock Energy (FE)	MJ		
Use-stage metrics	Units		
Annual Site Electricity Use	kWh/y		
Annual Site Gas Use	therm/y		
Outdoor Air Temperature	°C		
(city mean, near the top of the urban canopy)	C		
Ozone Concentration	parts per billion		
(city mean at 15:00 local standard time)	(ppb)		

^{*}CO₂e, or carbon dioxide equivalent, is a standard unit for measuring carbon footprints or "global warming potential." The idea is to express the impact of each different greenhouse gas in terms of the amount of CO₂ that would create the same amount of warming.

^{**}POCP (O_3 e) is used to classify compounds according to their ability to form tropospheric ozone. Similar to the CO_2 e unit for GWP, O_3 e is used to express different emission compounds in terms of the amount of O_3 that would have the same impact on formation of smog.

Pavement Life-Cycle Assessment Tool Methodology (for developing the tool)

Tool applies datasets and algorithms developed through complementary research efforts



14:00 LST 20:00 LST 0.00 -0.02-0.04-0.06-0.08-0.08 -0.10-0.11 -0.12**Urban climate modeling**

Local pavement practices

CA life-cycle inventories

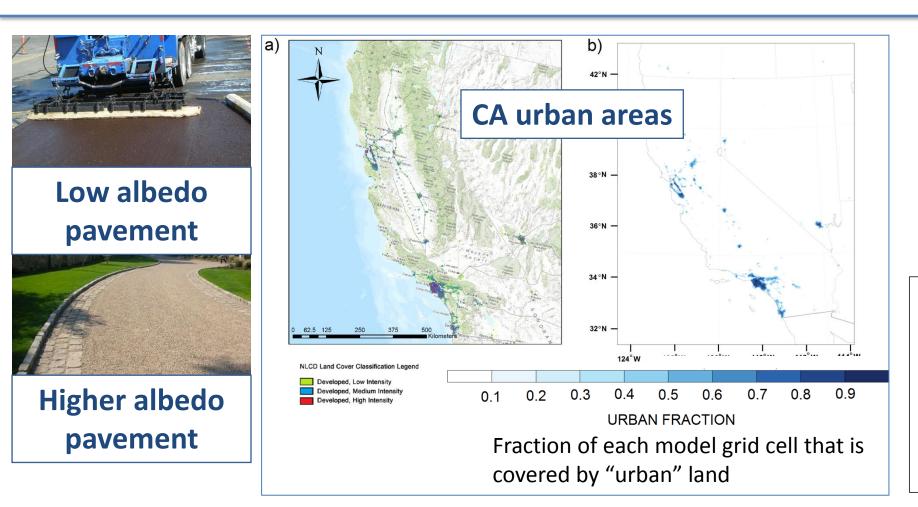
We investigated pavement management and maintenance practices used by local governments in California

- Conducted interviews with 8 cities to survey their pavement practices
- Cities interviewed treated 1.3 to 20% of their pavement networks annually

We developed California-specific pavement material and electrical energy production life-cycle inventories

Based on CA utilities' projected electric grid mix in 2020 using Renewable Portfolio Standard

Manufacture


Construction

Transportation

Mohegh et al. 2017

We modeled urban climate to estimate city-wide air temperature reductions from cool pavement adoption

Simulated increases in pavement albedo in CA

urban areas

We estimated reduction in urban ozone concentration when cool pavements lower air temperature

1. Reviewed literature for modeled and observed ozone-temperature sensitivities in CA air basins

CA Air Basins

Air basins outlined in

gold consistently

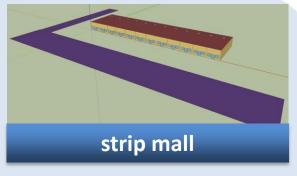
2. Applied sensitivities to our modeled air temperature results at 14:00 local standard time to calculate urban ozone changes

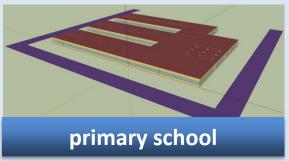
We modeled buildings to calculate changes in energy use from modifying albedo of city and local streets

Residential

- single-family home
- apartment building

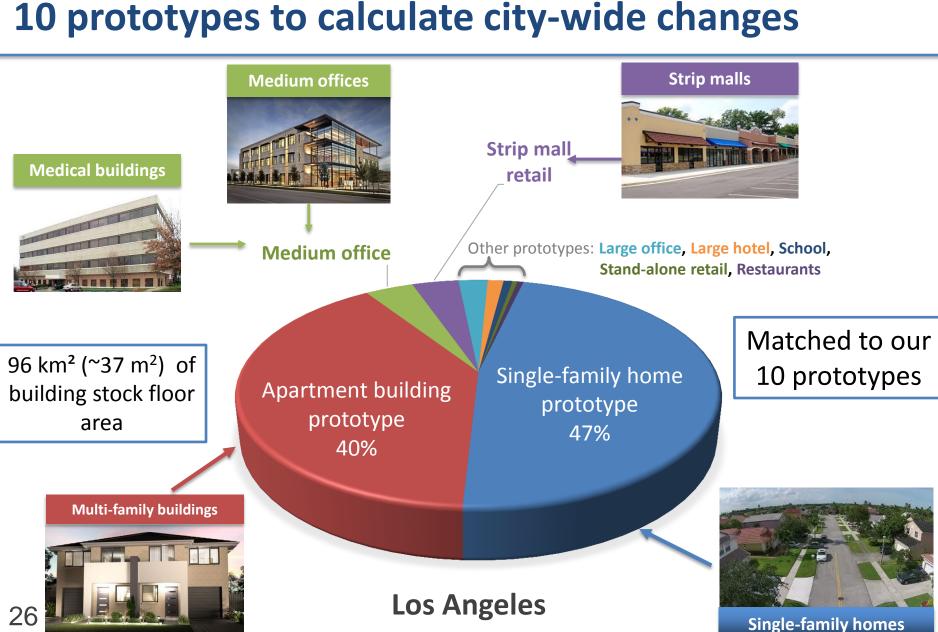
10 prototypes were modeled





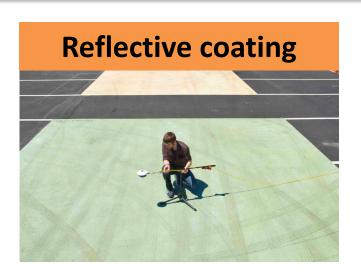
Commercial

- 2 offices
- 2 retail
- 2 restaurants
- primary school
- large hotel



EnergyPlus v. 8.5

We matched each city's building stock to the 10 prototypes to calculate city-wide changes


Pavement Life-Cycle Assessment Tool Case Studies

Gilbert HE, Rosado PJ, Ban-Weiss G, Harvey JT, Li H, Mandel BH, Millstein D, Mohegh A, Saboori A, Levinson RM. 2017. Energy and environmental consequences of a cool pavement campaign. *Energy and Buildings*, in press.

http://doi.org/10.1016/j.enbuild.2017.03.051

We evaluated 3 pavement scenarios: routine maintenance, rehabilitation, and long-life rehabilitation (i)

Routine maintenance case study

Treatment	Case study
Slurry seal	Typical pavement for Case 1A
Styrene acrylate	Less-typical pavement for Case 1A
reflective coating	

We evaluated 3 pavement scenarios: routine maintenance, rehabilitation, and long-life rehabilitation (ii)

Rehabilitation case study

Treatment	Case study
Mill-and-fill AC	Typical pavement for Cases 2A, 2B, and 2C
BCOA (no SCM)	Less-typical pavement for Case 2A
BCOA (low SCM)	Less-typical pavement for Case 2B
BCOA (high SCM)	Less-typical pavement for Case 2C

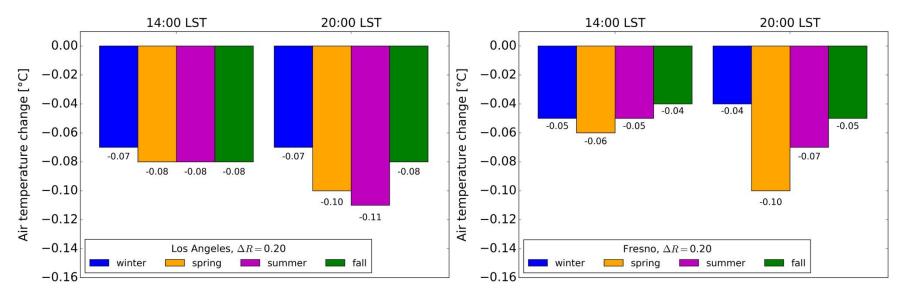
SCM = supplementary cementitious materials


Case study	Typical treatment	Less-typical treatment	Aged albedo	Albedo increase	Service life (y)	Thickness per installation (cm)	Thickness installed over 50 y (cm)		
	Slurry seal		0.10	-	7	-	-		
1. Routine maintenance		1A: Styrene acrylate reflective coating	0.30	0.20	5	-	-		
2. Rehabilitation	Mill-and-fill AC		0.10	-	10	6	30		
		2A: BCOA (no SCM)	0.25	0.15	20	10	25		
		2B: BCOA (low SCM)	0.25	0.15	20	10	25		
		2C: BCOA (high SCM)	0.25	0.15	20	10	25		
*Case study 3 is similar but with longer lives and thicker navements									

*Case study 3 is similar but with longer lives and thicker pavements **METRICS Outdoor Air Global Warming Potential Primary Energy Demand** (GWP), kg of CO₂e (PED) w/o FE, MJ Temperature, °C

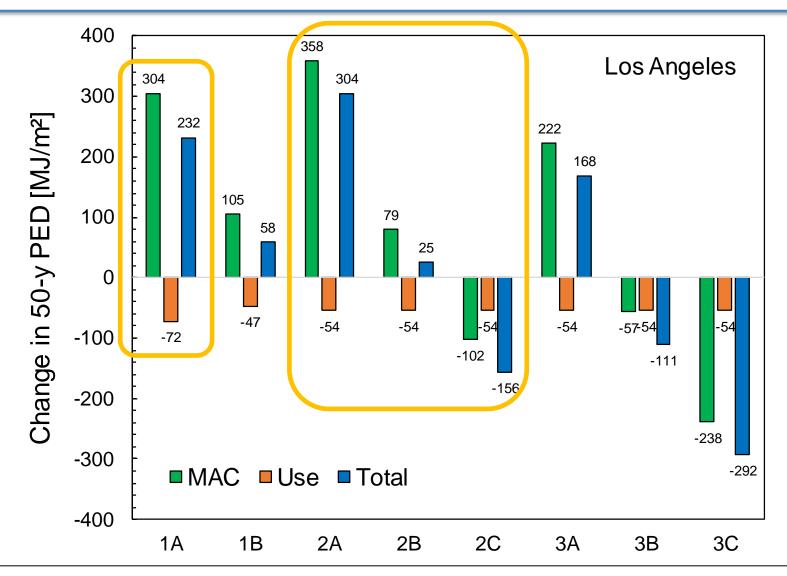
30

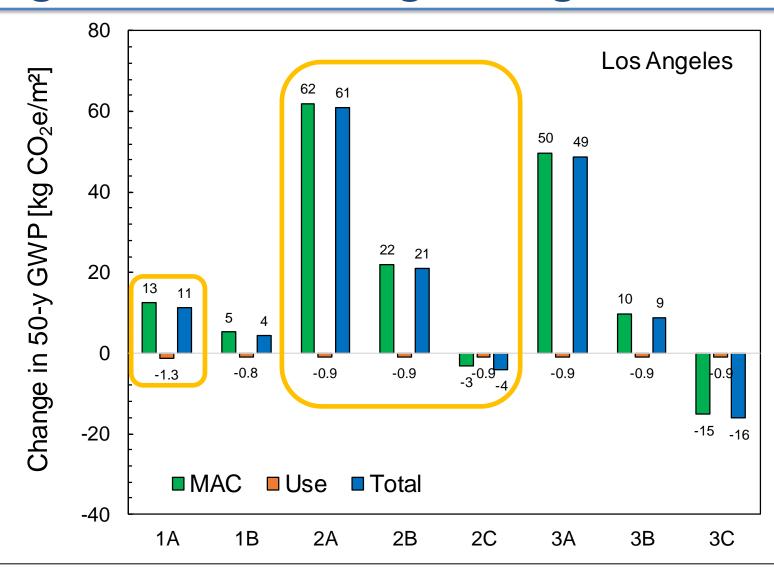
All cases evaluated for Fresno and Los Angeles with 30% of city pavement modified



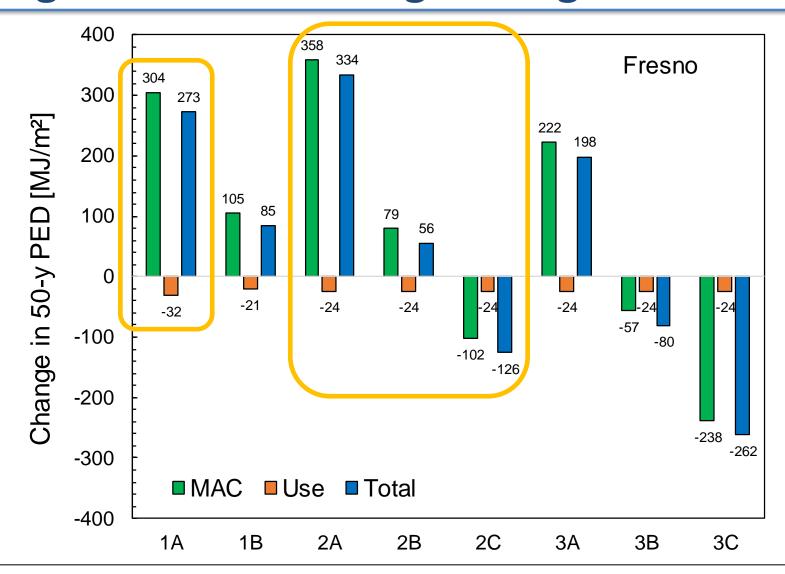
city pavement

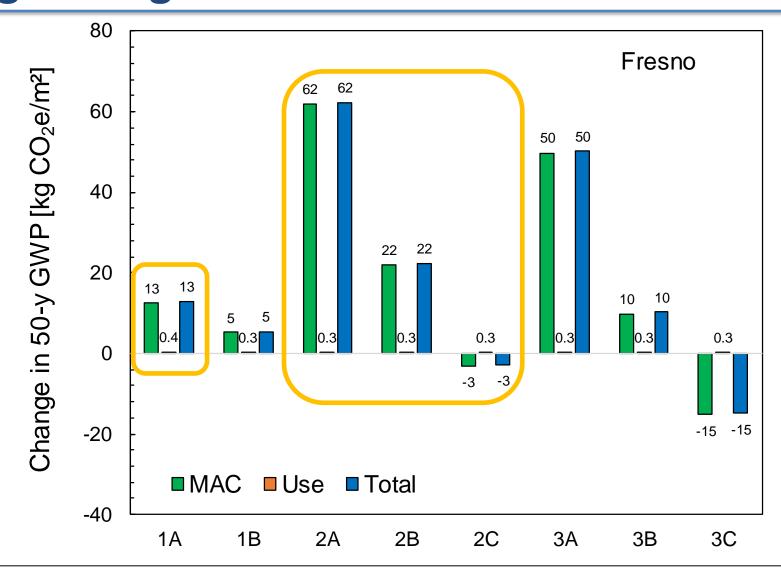
The modeled changes to air temperature are consistent with other urban heat island mitigation strategy studies

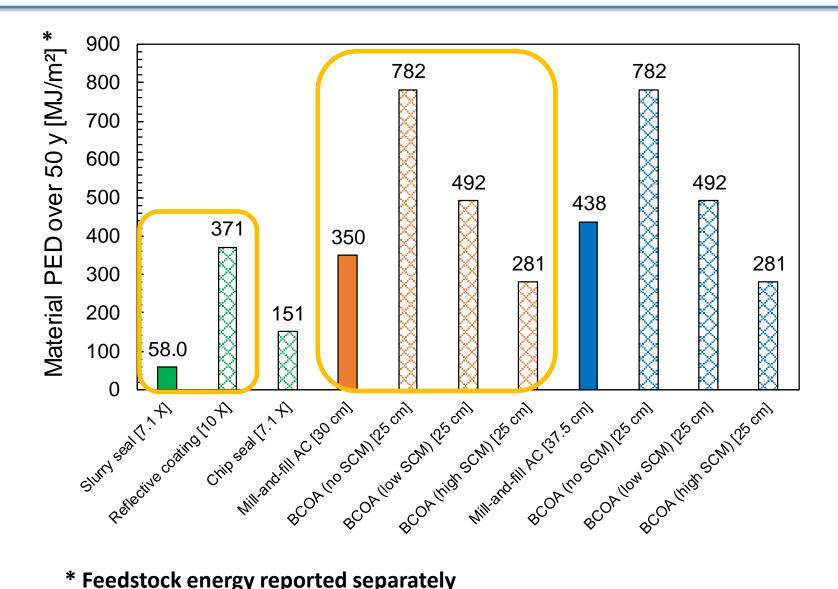

Simulated cooling rate (0.9°C per 0.1 increase in urban albedo) matches Santamouris (2014)

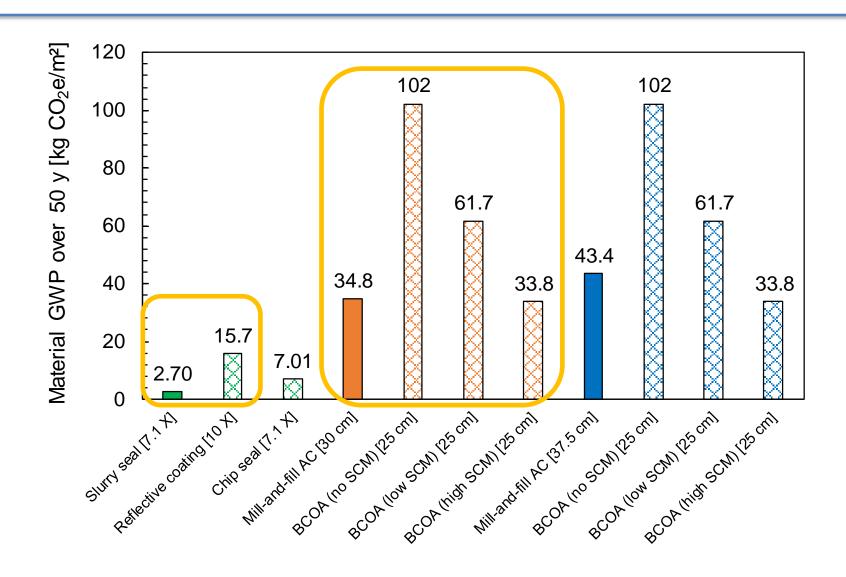

Los Angeles

Fresno


The materials & construction (MAC) stage primary energy demand (PED) changes exceed use-stage changes in LA


The MAC-stage global warming potential changes exceed use-stage changes in LA


The MAC-stage primary energy demand changes exceed use-stage changes in Fresno


The MAC-stage GWP changes exceed usestage changes in Fresno

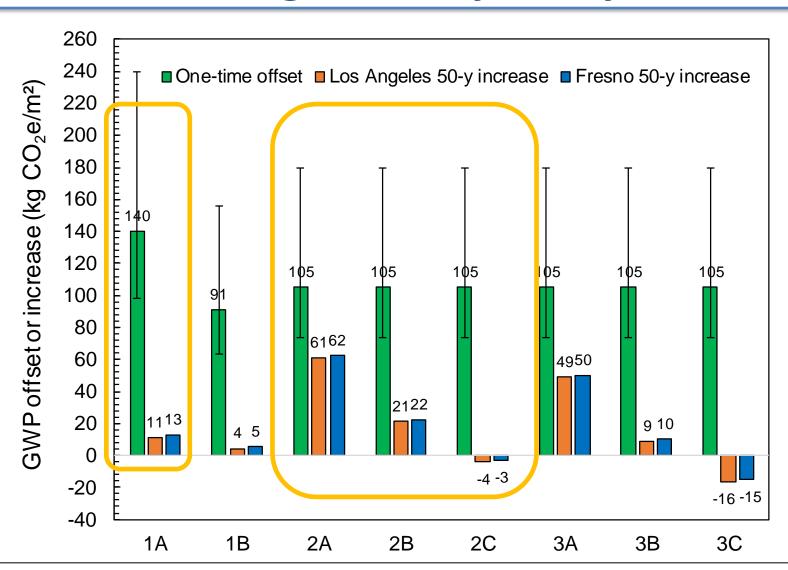
The manufacture of cool pavements is frequently more energy intensive than typical treatments

It also tends to be more carbon intensive

The results can be evaluated in the context of city GHG emission goals

Los Angeles

	Increase in annual GWP (Mt CO ₂ e)					
Case Study	Reflective	BCOA	BCOA	BCOA		
	coating [1A]	(no SCM) [2A]	(low SCM) [2B]	(high SCM) [2C]		
1. Routine	0.018					
maintenance	0.018					
2. Rehabilitation		0.097	0.034	-0.006		


Los Angeles has a 2025 GHG emission target:

20 Mt/y CO_2e

Relative to this target, the city-wide GWP change ranges

from savings 0.03% to penalty 0.49%

The *one-time* GWP offset from global cooling exceeds the changes in 50-y life-cycle GWP

024004> IPCC AR5; Akbari et al. 2012 <doi:10.1088/1748-93</pre>

Annual building energy cost savings for cool pavements are less than those for cool roofs

Substituting a reflective coating for a slurry seal (albedo increase 0.20):

Building conditioning energy cost savings per square meter of pavement modified in LA \$0.03/y

Substituting a cool roof for a dark roof (albedo increase 0.35):

Building conditioning energy cost savings per square meter of roof modified in LA \$0.47/y

→ 15 times the annual cool pavement conditioning energy cost savings

Pavement Life-Cycle Assessment Tool Conclusions

Key takeaways about cool pavements: 50-year life-cycle changes in PED, GWP

For case studies:

- In use stage,
 - PED decreases in LA and Fresno
 - -GWP decreases in LA, increases in Fresno
- In MAC stage, PED and GWP usually rise
- MAC-stage changes typically >> use-stage changes
- Total PED, GWP tend to rise

Key takeaways about cool pavements: mitigating life-cycle penalties

- 50-y GWP change < or ≪ than one-time global cooling GWP offset
- Introduction of new approaches for cool pavement materials (e.g., reducing cement content) can mitigate these impacts
- If cool pavements reduce global warming, and they are found to be cost effective relative to other strategies, then further work is warranted in the development of these technologies

Resources (i)

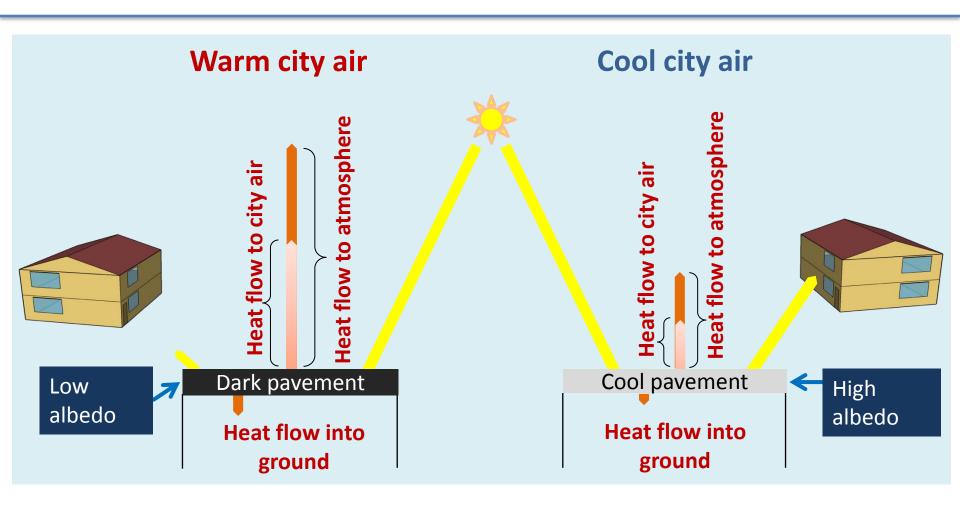
CARB project website & link to final report

```
https://www.arb.ca.gov/research/single-
project.php?row id=65149
```

- Information for accessing and operating the pLCA tool can be found in final report (Section 2.8, beginning on page 57)
- Gilbert HE, Rosado PJ, Ban-Weiss G, Harvey JT, Li H, Mandel BH, Millstein D, Mohegh A, Saboori A, Levinson RM. 2017. Energy and environmental consequences of a cool pavement campaign. *Energy* and Buildings, in press.

http://doi.org/10.1016/j.enbuild.2017.03.051

Resources (ii)


Related publications

- Pomerantz M et al. 2015. A simple tool for estimating city-wide annual electrical energy savings from cooler surfaces. *Urban Climate* 14(2), 315-325. https://doi.org/10.1016/j.uclim.2015.05.007
- Pomerantz M. 2017. Are cooler surfaces a cost-effect mitigation of urban heat islands? *Urban Climate*, in press. http://doi.org/10.1016/j.uclim.2017.04.009
- Rosado P et al. 2017. Influence of street setbacks on solar reflection and air cooling by reflective streets in urban canyons. *Solar Energy* 144, 144-157. https://doi.org/10.1016/j.solener.2016.12.026
- Mohegh A et al. 2017. Modeling the climate impacts of deploying solar reflective cool pavements in California cities. *Journal of Geophysical Research*, in press.

Thank you!

Reference Slides

Pavements with high albedo_can cool the city air, but may increase reflected sunlight that strikes buildings

We evaluated 3 pavement scenarios: routine maintenance, rehabilitation, and long-life rehabilitation (i)

Routine maintenance case study

Treatment	Composition			
Slurry seal	6.5 kg crushed fine aggregate and 0.68 kg residual asphalt per m ²			
	pavement			
Styrene acrylate	7.7% styrene, 6% titanium dioxide, 13% butyl acroylate, 5.4%			
reflective coating	methyl acrylate, 3% methacrylic acid, 6% zinc oxide, 0.18%			
	ammonium persulfate, 0.1% N-dodecyl mercaptan, 0.02%			
	ammonium sulfite, 1.6% hydroxypropane-1-sulphonate, 1%			
	azirdine, 1% ammonium hydroxide, and 55% water by mass,			
	applied at 1 kg per m² pavement			

We evaluated 3 pavement scenarios: routine maintenance, rehabilitation, and long-life rehabilitation (ii)

Mill-and-fill asphalt concrete (AC)

Bonded cement concrete overlay over asphalt (BCOA)

With no, low or high supplementary cementitious materials (SCM)

Rehabilitation case study

-	Treatment	Composition				
	Mill-and-fill AC	38% coarse aggregate, 57% fine aggregate, 5% dust, 4% asphalt binder, and 15% reclaimed				
		asphalt pavement by mass				
	BCOA (no SCM)	1071 kg coarse aggregate, 598 kg fine aggregate, 448 kg cement, 1.8 kg polypropylene fibers,				
		1.9 kg water reducer (Daracern 65 at 390 mL per 100 kg of cement), 1.6 kg retarder				
		(Daratard 17 at 325 mL per 100 kg of cement), 0.6 kg air entraining admixture (Daravair 1400				
		at 120 mL per 100 kg of cement), and 161 kg water per m³ wet concrete				
	BCOA (low SCM)	1085 kg coarse aggregate, 764 kg fine aggregate, 267 kg cement, 71 kg fly ash, 1.8 kg				
		polypropylene fibers, and 145 kg water per m³ wet concrete				
	BCOA (high SCM)	1038 kg coarse aggregate, 817 kg fine aggregate, 139 kg cement, 56 kg slag, 84 kg of fly ash,				
1						

and 173 kg water per m³ wet concrete

Case study	Typical treatment	Less-typical treatment	Aged albedo	Albedo increase	Service life (y)	Thickness per installation (cm)	Thickness installed over 50 y (cm)
	Mill-and-fill AC		0.10	-	20	15	37.5
3. Long-life		3A: BCOA (no SCM)	0.25	0.15	30	15	25
rehabilitation		3B: BCOA (low SCM)	0.25	0.15	30	15	25
		3C: BCOA (high SCM)	0.25	0.15	30	15	25